Intelligence

Could a new form of concrete be a key to the energy transition?

byMatthew Keillor, Editor, Enverus Intelligence

Researchers at the Massachusetts Institute of Technology (MIT) have developed a new material using ubiquitous materials – cement and carbon black – that could form the basis for a novel energy storage system, the university reported.

The researchers published their findings July 31 in the peer-reviewed journal Proceedings of the National Academy of Sciences. The two materials were combined with water to form a supercapacitor, which can act as an alternative to batteries to store energy.

What is a capacitor?

Capacitors consist of two electrically conductive plates immersed in an electrolyte and separated by a membrane. When voltage is applied across the capacitor, charged ions accumulate on the plates with the opposing charge, creating an electric field between the plates. Capacitors can maintain this charge for long periods and then discharge it quickly when needed. Supercapacitors are simply capacitors that can store exceptionally large charges.

The limiting factor for the amount of power a capacitor can store is the total surface area of the conductive plates. The researchers were able to produce a cement-based material with an extremely high internal surface area through the introduction of carbon black, which is highly conductive, into a concrete mixture with cement powder and water and letting it cure. The water forms a fractal-like network throughout the overall structure as it reacts with the cement, and the carbon black naturally migrates into these channels to make wire-like structures within the hardened cement, MIT said.

The resulting material was soaked in potassium chloride – a standard electrolyte material – to provide the charged particles that accumulate on the carbon structures. Two electrodes made of the material and separated by a thin space or insulating layer created a powerful supercapacitor.

“The material is fascinating, because you have the most-used man-made material in the world, cement, that is combined with carbon black, that is a well-known historical material – the Dead Sea Scrolls were written with it,” MIT Professor Admir Masic said. “You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”

How much energy storage are we looking at?

The carbon networks can be formed with as little as 3% carbon black in the mix by volume. The researchers calculated that a 45-cubic-meter block of the material would be able to store 10 kWh of energy, equivalent to the average daily electricity consumption for a household. For comparison, the median square footage of a single-family home in the U.S. in 2021 was about 2,273 sq ft. With foundation slab thicknesses typically ranging 6-10 inches, that would amount to 42.1-70.2 cubic yards of concrete.

What’s the trade-off?

There is a trade-off between storage capacity and structural strength, as higher levels of carbon black slightly weaken the concrete. For structural elements such as foundations for homes or wind turbines, the researchers found the sweet spot to be about 10% carbon black by volume. Higher percentages could be useful in applications where the concrete does not play a structural role. The researchers also envisioned a scenario in which the material is used in roadways, which could store electricity from adjacent generation sources and wirelessly recharge electric vehicles as they drive. The material could also be used for heating by applying electricity to the carbon-laced concrete.

When can we expect to see widespread use?

Of course, the researchers are not yet building and testing 45-cubic-meter blocks of the material, so don’t expect to see it in commercial use anytime soon. The initial experiments were conducted using small supercapacitors about one centimeter in diameter and one millimeter thick, three of which were connected to light up a 3-volt LED, but they believe it is a highly scalable system. The researchers are now planning to test progressively larger versions of the material, starting with supercapacitors about the size of a 12-volt car battery and working toward a 45-cubic-meter version.

Enverus Intelligence® | Research (EIR) explores the challenging economics of various multiday and seasonal energy storage technologies under current market structures. Click here for the full report (available to EIR subscribers).

About Enverus Intelligence Publications
Enverus Intelligence Publications presents the news as it happens with impactful, concise articles, cutting through the clutter to deliver timely perspectives and insights on various topics from writers who provide deep context to the energy sector.

Matthew Keillor, Editor, Enverus Intelligence

Matthew Keillor, Editor, Enverus Intelligence

Matthew Keillor joined Enverus in 2019. As part of the Publications team, he covers oil and gas commodity markets, renewable energy and upstream, financial and M&A activity in the oil and gas sector. Matthew is a graduate of Texas State University.

Subscribe to the Enverus Blog

A weekly update on the latest “no-fluff” insight and analysis of the energy industry.

Related Content

energy-transition
Energy Transition
ByJeffery Jen

There has been a battle for CO2 in the Midwest with two major CO2 pipeline projects, Navigator Heartland Greenway and Summit Carbon Solutions, looking to capitalize on the 45Q PTC by targeting the low capture cost CO2 emissions from the...

Enverus Press Release - Blue hydrogen: Greening the bottom line
Energy Transition
ByCarson Kearl

In a world where energy value can make up a small portion of the revenue stream from emerging business models, what else is at play? Enverus Intelligence Research® views effective energy transition business as taking advantage of two key additive...

field-representative
Intelligence Oilfield Services
ByErin Faulkner

Permitting information for oil and gas wells is one of the most readily available and least lagged pieces of data on industry activity, but it is often seen as a poor indicator of future drilling activity.

Enverus Press Release - Exploring falling rigs and rising production
Energy Analytics Minerals
ByEnverus

While horizontal drilling and hydraulic fracturing significantly enhance well productivity, they have had the opposite effect on the land department.

operators
Intelligence
ByJoseph Gyure, Editor, Enverus Intelligence

All seven regions covered by the Enverus Day Rate Survey saw rates rise sequentially for the second time in three months in January as confidence started to strengthen among U.S. land drilling contractors.

accurate-grid-forecastin
Energy Transition Intelligence
ByJoseph Gyure, Editor, Enverus Intelligence

Ørsted took a blade to its project pipeline, reducing its ambition to 35-38 GW of installed capacity by 2030 from the previous 50 GW.

ofs-blog
Intelligence
ByJoseph Gyure, Editor, Enverus Intelligence

SLB has reaffirmed its 2024 financial guidance, part of an effort by international oilfield services companies to reassure investors after the Saudi Ministry of Energy called off plans to increase its maximum sustainable capacity by 1 MMbo/d to 13 MMbo/d...

EV-parent-image-4
Analyst Takes Energy Transition
ByEnverus

Despite the relatively scant incentives for buying an EV in the U.S. compared to other countries, the U.S. Environmental Protection Agency (EPA) presented its plan in 2023 to tighten tailpipe emissions regulations.

Enverus Blog - Increase visibility and efficiency with OpenTicket Mobile digital field ticketing software
Trading and Risk
ByEnverus

Amid significant volatility in global energy markets, U.S. President Joe Biden’s decision to temporarily halt approvals for pending liquefied natural gas (LNG) projects seems to defy conventional trading wisdom. This audacious move has given rise to a variety of viewpoints...

Let’s get started!

We’ll follow up right away to show you a quick product tour.

Let’s get started!

We’ll follow up right away to show you a quick product tour.

Sign up for our Blog

Register Today

Get Energy Transition Research updates straight to your inbox by filling out the form below.

Sign Up

Power Your Insights

Connect with an Expert

Access Product Tour

Speak to an Expert